На правах рукописи

МАЛИНИНА ГАЛИНА АЛЕКСАНДРОВНА

СТРОЕНИЕ И ГИДРОЛИТИЧЕСКАЯ УСТОЙЧИВОСТЬ САМАРИЙ, ГАФНИЙ И УРАНСОДЕРЖАЩИХ СТЕКЛОКРИСТАЛЛИЧЕСКИХ МАТЕРИАЛОВ ДЛЯ ИММОБИЛИЗАЦИИ ТВЕРДЫХ РАДИОАКТИВНЫХ ОТХОДОВ

05.17.02 – Технология редких, рассеянных и радиоактивных элементов

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

Работа выполнена в Федеральном государственном унитарном предприятии «Объединенный эколого-технологический и научно-исследовательский центр по обезвреживанию РАО и охране окружающей среды» (ФГУП «РАДОН»)

Научный руководитель:	доктор химических наук, профессор Стефановский Сергей Владимирович
Официальные оппоненты:	доктор химических наук Куляко Юрий Михайлович, заведующий Лабораторией радиохимии Института геохимии и аналитической химии им. В.И. Вернадского РАН
	кандидат технических наук Ремизов Михаил Борисович, начальник Технологической лаборатории по Обращению с радиоактивными отходами ФГУП «ПО «Маяк» ГК «Росатом»
Ведущая организация:	Московский государственный университет им. М.В. Ломоносова

Защита состоится «____» _____2016 года в ______часов 00 мин. на заседании объединенного диссертационного совета ДМ 418.002.01 при акционерном обществе «Высокотехнологический научно-исследовательский институт неорганических материалов имени академика А.А. Бочвара» (АО «ВНИИНМ»), Федеральном государственном унитарном предприятии «Объединенный эколого-технологический и научно-исследовательский центр по обезвреживанию РАО и охране окружающей среды» (ФГУП «РАДОН») и Федеральном государственном бюджетном учреждении науки Институт физической химии и электрохимии имени А.Н. Фрумкина Российской академии наук (ИФХЭ РАН) по адресу 123098, г. Москва, ул. Живописная, д.44, зд.12, МСП АО «ВНИИНМ», конференц-зал.

С диссертацией можно ознакомиться в библиотеке АО «ВНИИНМ» и на сайте www.bochvar.ru

Автореферат диссертации разослан «____» ____2016 г.

Отзыв в двух экземплярах, заверенных печатью организации, просим отправлять по адресу: 123098, г. Москва, ул. Рогова, д. 5а.

Ученый секретарь диссертационного совета

lef- Шмидт Ольга Витальевна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. Твердые РАО, образующиеся на всех стадиях ядерного топливного цикла (ЯТЦ), при эксплуатации атомных электростанций (АЭС), проведении научно-исследовательских работ, в некоторых промышленных производствах и при ликвидации радиационных аварий и аномалий, характеризуются большим разнообразием химического, радионуклидного и фазового состава и морфологии. Широкая вариабельность химического состава твердых РАО, даже в пределах одной партии, существенно затрудняет подбор стеклообразующих добавок и их унификацию. Поэтому обычно подбор добавок производится для конкретного состава отходов; при этом, выбирается базовый состав иммобилизующей матрицы, к которому затем добавляют РАО. Конечный продукт (форма РАО) может быть гомогенным (стекло), квазигомогенным (стеклокерамика) или неоднородным (стеклокомпозит). В частности, шлаки, образующиеся при термической переработке (сжигании, пиролизе) органических и смешанных радиоактивных отходов (РАО), концентрируют тяжелые металлы, в том числе актиноиды Th, U, Np, Pu и Am. Данные PAO не обладают комплексом свойств, позволяющих направлять их на долговременное хранение или захоронение без дополнительной обработки. Эффективным методом переработки РАО является остекловывание, которое уже применяется в промышленных масштабах для отверждения жидких РАО высокого и среднего уровней активности. Ранее была показана принципиальная возможность остекловывания шлаков с использованием в качестве стеклообразующих добавок (флюса) дисиликата и тетрабората натрия. Перевод твердых РАО, в том числе шлаков, в химически-устойчивую и механически прочную форму, пригодную для окончательного удаления с целью изоляции РАО от биосферы, является актуальной научно-технической и социальной задачей, решение которой значительно повышает уровень радиационной безопасности населения.

Работа выполнялась в рамках «Программы совершенствования и повышения качества, безопасности, надежности средств и методов производства при обезвреживании РАО, обеспечения радиационной безопасности населения и охраны окружающей среды» ФГУП «РАДОН» на 2009-2012 гг, утвержденной руководителем Департамента жилищно-коммунального хозяйства и благоустройства Правительства Москвы.

<u>Целью настоящей работы</u> является разработка стекломатериалов для иммобилизации шлаков печей сжигания органических и смешанных РАО и других твердых неорганических РАО, обладающих высокой химической устойчивостью и пригодных для окончательного удаления.

Указанная цель достигается решением следующих задач:

 Подбор стеклообразующих (флюсующих) добавок, выбор имитаторов элементов РАО и синтез шлакосодержащих материалов;

- Определение фазового состава материалов, химического состава сосуществующих фаз и распределения элементов имитаторов РАО между фазами;
- Изучение строения анионного мотива шлакосодержащих стекломатериалов.
- Определение химической устойчивости шлакосодержащих материалов;
- Определение состояния элементов имитаторов РАО, включая состояние окисления, характер координационного окружения и гомогенность распределения в матрицах.
- Определение области составов шлакосодержащих материалов, пригодных для практического использования.

Научная новизна работы:

- Определен фазовый состав и распределение элементов в щлакосодержащих стекломатериалах с натрий-дисиликатным и натрий-тетраборатным флюсами, содержащих оксиды самария, гафния и урана, как имитаторы элементов РАО;
- Изучена структура анионного мотива стеклофазы в стеклокристаллических шлакосодержащих материалах с натрий-дисиликатным и натрий-тетраборатным флюсами, содержащих оксиды самария, гафния и урана, как имитаторы элементов РАО;
- Определена химическая устойчивость стеклокристаллических шлакосодержащих материалов с натрий-дисиликатным и натрий-тетраборатным флюсами, содержащих оксиды самария, гафния и урана, как имитаторы элементов РАО;
- Определено состояние окисления и локальное окружение атомов железа, самария, гафния и урана в стеклокристаллических шлакосодержащих материалов с натрий-дисиликатным и натрий-тетраборатным флюсами.

Практическая значимость работы:

- Предложены составы шлакосодержащих материалов с натрий-дисиликатным и натрий-тетраборатным флюсами, обладающие высокой химической устойчивостью, пригодные для иммобилизации радионуклидов шлаков и окончательного удаления;
- В результаты изучения стеклокристаллических материалов, полученных из имитатора шлака с добавкой оксида самария, Sm₂O₃, как имитатора трехвалентных актинидов (Pu₂O₃, Am₂O₃, Cm₂O₃) показано, что значительная доля Sm входит в состав кристаллической фазы со структурой апатита/бритолита, чем обеспечивается его надежная иммобилизация в матрице.
- В результате изучения продуктов остекловывания шлаков с добавкой оксида гафния, HfO₂, как имитатора четырехвалентных актинидов (NpO₂, PuO₂, AmO₂), показано, что Hf, в основном, входит в состав кубического твердого раствора флюоритовой структуры, обладающего высокой химической и радиационной стойкостью.

 В продуктах остекловывания шлаков с добавкой оксида урана (UO₂) с натрийдисиликатным и натрий-тетраборатным флюсами уран входит преимущественно в кубический твердый раствор флюоритовой струкутры, обладающий высокой химической и радиационной стойкостью.

Основные положения, выносимые на защиту:

- Фазовый состав, межфазное распределение элементов в стеклокристаллических материалах, допированных самарием и полученных из имитированного шлака и дисиликата или тетрабората натрия, строение анионного мотива стекломатриалов и их гидролитическая устойчивость;
- Фазовый состав и межфазное распределение элементов в стеклокристаллических материалах, допированных гафнием и полученных из имитированного шлака и дисиликата или тетрабората натрия, строение анионного мотива стекломатериалов и их гидролитическая устойчивость;
- Фазовый состав и межфазное распределение элементов в стеклокристаллических материалах, допированных ураном и полученных из имитированного шлака и дисиликата или тетрабората натрия, и строение их анионного мотива;
- Состояние окисления и локальное окружение железа, самария, гафния и урана в стеклокристаллических материалах, полученных из имитированного шлака и дисиликата или тетрабората натрия.

<u>Личный вклад автора</u>. Диссертант принимала непосредственное участие в работах, выполнявшихся в Отделе №7 Центра разработки технологий обезвреживания РАО по теме «Разработка способов получения наноструктурированных материалов для кондиционирования РАО и определение их строения и свойств», включая проектирование составов и синтез стекломатериалов, подготовку образцов для дифракционных и спектроскопических исследований, анализ полученных данных, определение химической устойчивости стекломатериалов и подготовку статей и тезисов докладов.

Апробация работы. Основные положения диссертационной работы были доложены на международных и Российских конференциях, симпозиумах, семинарах: собрании Европейского Общества Материаловедения (E-MRS) 2010(Страсбур, Франция,2010), Конференциях по Обращению с отходами "Waste Management 2011" (Финикс, США, 2011) и "Waste Management 2012"(Финикс, США, 2012), VII Российской конференции по радиохимии» Радиохимия 2012» (Димитровград, РФ, 2012), 10-й Тихоокеанской конференции по технологии стекла и керамики (Сан Диего, США, 2013), Российско-Североевропейском симпозиуме по радиохимии (Москва, 2013), конференции «Стекло: наука и практика» (Санкт-Петербург, 2013) и семинаре МАГАТЭ «Плазменная переработка радиоактивных отходов: технология процесса, отходящие газы и твердые отходы» (Сан Карлос де Барилоче, Аргентина, 2015). **Публикации**. По теме диссертации опубликовано 19 работ, в том числе: 12 статей в журналах, рекомендованных ВАК РФ для публикации результатов диссертаций, и иностранных журналах, реферируемых в базах Web of Science и Scopus, 2 статьи в трудах международных конференций, реферируемые в других международных базах данных, и 5 тезисов докладов на международных и Российских конференциях.

<u>Структура и объем диссертации</u>. Диссертация состоит из введения, 6 глав, заключения, списка литературы из 166 наименований. Материал изложен на 117 страницах печатного текста, включает 28 рисунков и 20 таблиц.

СОДЕРЖАНИЕ РАБОТЫ Введение

Обоснована актуальность диссертационной работы, сформулированы цель, научная новизна, практическая значимость, защищаемые положения, указан личный вклад автора, приведены сведения об апробации работы и публикациях автора.

Глава 1 (Литературный обзор)

Дан критический анализ литературных источников, касающихся темы диссертационной работы, даны характеристика РАО, основные требования, предъявляемые к матрицам для РАО и краткие сведения о типичных формах РАО. Показано, что стеклокристаллические материалы (стеклокерамика) являются наиболее перспективными формами РАО, так как сочетают в себе положительные свойства стеклообразных и кристаллических форм РАО и могут быть получены по хорошо проработанной технологии остекловывания РАО с последующей частичной кристаллизацией при охлаждении.

Глава 2. Методическая часть

Приведены данные о химическом и фазовом составах реального шлака и его имитатора, выбран имитатор для последующих экспериментов расчетного состава (масс.%): 6,0 Na₂O; 9,0 K₂O; 15,0 CaO; 15,0 Al₂O₃; 10,0 FeO; 30,0 SiO₂; 10,0 P₂O₅; 5,0 (Sm₂O₃ или HfO₂ или U₃O₈), описаны методика синтеза стеклокристаллических материалов и методы анализа. Составы материалов даны в табл. 1.

Фазовый состав полученных материалов определяли на рентгеновском дифрактометре ДРОН-4 (Си K_{α} излучение). Микроструктуру образцов и локальный химический состав определяли на сканирующем электронном микроскопе JSM-5610LV с энергодисперсионным спектрометром JED-2300. Структуру анионного мотива стекломатериалов определяли с помощью инфракрасной (ИК) спектроскопии на модернизированном спектрофотометре ИКС-29 и Фурье ИК-спектрометре Shimadzu IR Prestige-21 и спектроскопии комбинационного рассеяния света на спектрофотометре Jobin Yvon U1000 (длина волны возбуждения 532 нм).

Orrory	Массовое соотношение кальцината и флюса в образцах, масс.9)				
Окси-	Образцы с Na ₂ Si ₂ O ₅				Образцы с Na ₂ B ₄ O ₇					MS**	
ды	0:100*	25:75	50:50	75:25	85:15	0:100	25:75	50:50	75:25	85:15	100:0
Na ₂ O	34,07	27,05	20,03	13,02	10,21	30,69	24,52	18,35	12,17	9,70	6,00
K ₂ O	-	2,25	4,50	6,75	7,65	-	2,25	4,50	6,75	7,65	9,00
CaO	-	3,75	7,50	11,25	12,75	-	3,75	7,50	11,25	12,75	15,00
Al_2O_3	-	3,75	7,50	11,25	12,75	-	3,75	7,50	11,25	12,75	15,00
FeO	-	2,50	5,00	7,50	8,50	-	2,50	5,00	7,50	8,50	10,00
SiO ₂	65,93	56,95	47,97	38,98	35,39	-	7,50	15,00	22,5	25,50	30,00
P_2O_5	-	2,50	5,00	7,50	8,50	-	2,50	5,00	7,50	8,50	10,00
B_2O_3	-	-	-	-	-	69,31	51,98	34,65	17,33	10,40	-
MeO _n ***	-	1,25	2,50	3,75	4,25	-	1,25	2,50	3,75	4,25	5,00
T, ℃	1300	1300	1300	1350	1400	800	1000	1050	1250	1300	1500

Таблица 1 – Расчетное содержание компонентов в изученных материалах

* жидкое стекло состава дисиликата натрия, ** кальцинат (плавленый шлак), *** оксид имитатора актинидов (Sm₂O₃, HfO₂ или U₃O₈)

Измерения тонкой структуры рентгеновских спектров поглощения (X-ray absorption fine structure - XAFS) в околопороговом диапазоне (X-Ray Absorption Near-Edge Structure – EXAFS) и на удалении от него (Extended X-ray Absorption Fine Structure – EXAFS) проводили на синхротронном источнике Станции Структурного Материаловедения НИЦ «Курчатовский институт». Подгонку экспериментальных спектров в *R*-пространстве проводили с использованием программного пакета IFEFFIT¹ и литературных данных по кристаллическим структурам соответствующих оксидов. При подгонке были использованы самосогласованные амплитуды и фазы *ab initio* обратнорассеянного фотоэлектрона, рассчитанные при использовании методики FEFF8². Химическую устойчивость по отношению к воде определяли по методике PCT-A³, которая, в основном, соответствует ГОСТ Р 52126-2003⁴ для случая использования дробленых образцов и проведения испытаний при 90 °C.

Глава 3. Фазовый состав и строение стекломатериалов, допированных оксидом самария, как матриц для иммобилизации радиоактивных шлаков

Результаты рентгенофазового анализа (рис. 1) и сканирующей электронной микроскопии (СЭМ, рис. 2) показывают, что, как медленно охлажденные, так и закаленные образцы, состоят из одних и тех же фаз, но первые лучше раскристаллизованы и кристаллы имеют более крупный размер и правильную форму.

¹ B. Ravel, M. Newville // J. Synchrotron Rad. 2005. V.12, 537-541.

² A.L. Ankudinov, J.J. Rehr. // Phys. Rev. B, 1997. V.56. 1712-1716.

³ Standard Test Methods for Determining Chemical Durability of Nuclear Waste Glasses: The Product Consistency Test (PCT). ASTM Standard C 1285-94. ASTM, Philadelphia, PA. 1994

⁴ ГОСТ Р 52126-2003. Отходы радиоактивные. Определение химической устойчивости отвержденных высокоактивных отходов методом длительного выщелачивания. Госстандарт России. М., 2003.

исунок 1 – Рентген-дифрактограммы закаленных (слева) и медленн охлажденных материалов (справа)

Стекломатериалы серий Na₂Si₂O₅ – шлак и Na₂B₄O₇ – шлак при низком содержании шлака остаются рентгеноаморфными (рис. 1). При увеличении содержания нита, Ca₂SiO₄, а материале с силикатным флюсом (50Si) также и нефелин. При 75% содержании оксидов РАО в материале с силикатным флюсом (75Si) фаза нефелина становится доминирующей, а второстепенными – ларнит, фаза со структурой бритолита и шпинель типа магнетита, а в материале с боратным флюсом (75В) фаза со структурой бритолита является основной. При 85 и 100%-ном содержании оксидов РАО в материалах, как с силикатным (85Si) и с боратным флюсом (85B), так и в плавленом шлаке (MS) фаза нефелина является основной, а бритолит и магнетит – дополнительными. На микрофотографиях образца 75Si (рис. 2) достаточно хорошо различимы распределенные в ликвирующей стеклофазе удлиненные более темные и более светлые кристаллы, которые могут быть отнесены, соответственно, к нефелину и бритолиту, чьи составы хорошо пересчитываются на формулы Na_{0.69}K_{0.19}Ca_{0.12}Sm_{0.01}Al_{0.82}Fe_{0.11} Si_{1.00}P_{0.07}O_{4.08} и (Na_{2.82}K_{0.68}Ca_{2.04}Fe_{2.57}Al_{1.72}Sm_{0.17})(Si_{4.52}P_{0.70}Al_{0.78})O_{26-x}. Из найденных в материалах кристаллических фаз бритолит и подобные фазы (силикаты, силикофосфаты и фосфаты кальция и редких земель (Y, La, Ce...Gd)) рассматриваются как возможные вмещающие фазы для актинидов (U, Np, Pu, Am, Cm) и лантанидов PAO.

В изученных нами материалах фаза бритолита аккумулирует самарий (имитатор трехвалентных актинидов, в частности Pu³⁺, Am³⁺, Cm³⁺, и лантанидов).

В интервале волновых чисел ниже 1600 см⁻¹ проявляются полосы колебаний связей в структурной сетке стекла и решетках присутствующих в нем кристаллических фаз (рис. 3). Диапазон 850-1200 см⁻¹ охватывает полосы антисимметричных валентных колебаний связей в кремнекислородных группах и мостиках Si—O—B, Si—O—Fe и Si—O—Al, связывающих соответствующие тетраэдрические единицы; в диапазоне 500-800 см⁻¹ проявляются симметричные валентные колебания связей в кремнекислородых группах с одним (Q¹), двумя (Q²) и тремя (Q³) мостиковыми ионами кислорода, а также валентные колебания связей Al—O и Fe—O в металл-кислородных полиэдрах, преимущественно, тетраэдрах; ниже ~550 см⁻¹ проявляются деформационные колебания в кремне- и борокислородных группах и валентные колебания в октаэдрах AlO₆ и FeO₆. Сравнение ИК спектров материалов с силикатным флюсом, особенно при высоких концентрациях оксидов отходов, с референтным спектром нефелина показывает его заметный вклад в наблюдаемые спектры.

В КР спектрах материалов, полученных с использованием силикатного флюса (рис. 3), присутствуют интенсивные полосы в диапазоне 850-1250 см⁻¹, обусловленные валентными колебаниями в кремнекислородных единицах с различной степенью связности (Q^1 , Q^2 , Q^3 , Q^4), и слабые рефлексы в области малых волновых чисел и около 1500 см⁻¹. В КР спектре плавленого кальцината, наряду с полосами колебаний в одно- (955 см⁻¹) и двухсвязных (1027 см⁻¹) тетраэдрах SiO₄, отмечается широкое плечо в диапазоне 1150-1300 см⁻¹, интенсивная полоса с максимумом при 675 см⁻¹, которая, скорее всего, относится к колебаниям связей Al—O, и менее интенсивная полоса с максимумом при 312 см⁻¹, возможно, обусловленная колебаниями в октаэдрах Fe²⁺O₆ магнетита (ср. с референтным спектром магнетита).

Увеличение содержания шлака в борсодержащих материалах приводит к уменьшению интенсивности полос 1200-1500 и 650-750 см⁻¹ относительно полос 850-1100 и

Рисунок 3 – ИК и КР спектры закаленных материалов (Ne – референтный спектр нефелина) 400-500 см⁻¹, появлению и росту по интенсивности полос при 1280 и 655 см⁻¹ и сужению полосы 850-1100 см⁻¹ с утратой ее дублетного характера. При высоких концентрациях шлакаа в спектрах стекломатериалов имеет место расщепление полос в области малых волновых чисел (рис. 3). Наблюдаемые изменения вызваны переходом части бора из тройной в четверную координацию и увеличением содержания в стекломатериалах тетраэдрических единиц SiO₄ и AlO₄ (в меньшей мере FeO₄ и PO₄). Расщепление полос валентных и деформационных колебаний может быть связано с понижением симметрии структурных единиц под действием многозарядных катионов (Ca²⁺, Al³⁺, Fe^{2+/3+}, Sm³⁺) и предкристаллизационными процессами.

В системе с силикатным флюсом нормированные выходы Na, Si и Sm снижаются при увеличении содержания шлака в закаленных и медленно охлажденных материалах от 75 до 90 масс.%. В системе с боратным флюсом разница в величинах нормированных выходов элементов между закаленными и медленно охлажденными образцами более заметна. В целом, нормированные выходы B, Na и Si из шлакосодержащих стеклокерамик намного меньше, чем положено по стандарту EPA⁵ и сравнимы с величинами, найденными для стекол с имитаторами BAO SRNL, в частности, разработанными для иммобилизации высокоалюминатных BAO SB4⁶ (табл. 2).

⁵ C.C. Herman. Report WSRC-TR-2001-00511, 2001.

⁶ А.П. Кобелев, С.В. Стефановский, В.В. Лебедев и др. // Атомная энергия. 2008. Т.104, вып. 5. С. 291-295.

	Содержание	Нормированный выход, г/л			, г/л
Образец	шлака, масс.%	В	Na	Si	Sm
75Si, закалка	75	-	2.44	1.75	0.25
75Si, медленное охлаждение	75	-	2.48	1.73	0.24
85Si, закалка	85	-	1.58	1.32	0.20
85Si, медленное охлаждение	85	-	1.57	1.30	0.21
90Si, закалка	90	-	1.55	1.00	0.12
90Si, медленное охлаждение	90	-	1.56	1.03	0.10
MS, закалка	100	-	2.03	0.64	0.08
MS, медленное охлаждение	100	-	2.05	0.60	0.05
75В, закалка	75	5.55	3.24	3.16	0.34
75В, медленное охлаждение	75	5.77	3.26	3.25	0.30
85В, закалка	85	3.17	2.17	2.54	0.26
85В, медленное охлаждение	85	6.23	4.32	5.47	0.22
90В, закалка	90	0.84	1.67	1.09	0.17
90В, медленное охлаждение	90	2.11	3.73	2.20	0.15
SB4-60 (стенд) ⁶	60	0,66	0,57	0,32	-
SB4-50 (промышленная) ⁶	50	1,00	0,60	0,34	-
Стандарт ЕА (США) ⁵		18.57	13.73	3.92	-

Таблица 2 – Результаты испытаний по методике РСТ-А самарий-содержащих образцов с различным содержанием шлака

Понимание стадий процесса остекловывания позволяет оптимизировать процесс: снизить температуру, повысить скорость реакций. Для изучения механизма фазообразования были выбраны шихты материалов состава 75Si и 85B (табл. 1). Предварительно приготовленный имитатор щлака смешивали в заданных соотношениях с карбонатом натрия и кварцевым песком или с безводным тетраборатом натрия. Смеси помещали в тигли из карбида кремния и нагревали до температур 500 °C, 700 °C, 900 °C, 1000 °C, 1100 °C, 1200 °C, 1300 °C с выдержкой при каждой температуре 1 ч (рис.4).

При повышении температуры до 1000 °С содержание исходных фаз снижается, при 500 и 700 °С еще присутствует фосфат натрия-кальция типа NaCaPO₄, шпинель магнетитового типа и частично прореагировавший оксид самария. При температурах выше 700 °С фосфат натрия-кальция реагирует с кремнеземом с образованием сложных силикофосфатов с достаточно низким содержанием $P_2O_5 - Ca_2SiO_4 \cdot (0.05 \div 0.5)$ $Ca_3(PO_4)_2$, куда Sm входит в виде изоморфной примеси. Силикофосфат являлся основной фазой в образце, термообработанном при 1000 °С, и практически единственной в образцах, нагретых до 1100, 1200 и 1300 °С. Все эти образцы представляли собой частично расплавленные спеки. Процесс остекловывания в шихтных смесях из имитатора шлака и натрий-дисиликатного или натрийтетраборатного флюса протекает через образование промежуточных фаз, главным образом, силикофосфатов, способных инкорпорировать самарий, рассматриваемый как имитатор трехвалентных актинидов. Реакции в шихтах в целом завершаются до температур ~1000 °С, но для гомогенизации требуются более высокие температуры.

Рисунок 4 – Рентген-дифрактограммы образцов на силикатной (слева) и боратной (справа) основе, полученных при 500 (1), 700 (2), 900 (3), 1000 (4), 1100 (5), 1200 (6), 1300 °C (7) и расплавленных при 1350 °C с последующей закалкой (8) или медленным охлаждением (9) и референтных: α-кварца (Q), Sm₂O₃ (SO), NaCaPO₄ (NP), «бритолита» (SP), нефелина (Ne)

Если в системе с боратным флюсом механизм процесса близок к простому растворению компонентов шлака в маловязком боратном расплаве, то в системе с силикатным флюсом механизм фазообразования более сложен и включает рекристаллизацию при плавлении с выделением новообразованной фазы нефелина.

Глава 4. Фазовый состав и строение стекломатериалов, допированных оксидом гафния, как матриц для иммобилизации радиоактивных шлаков

По данным рентгенофазового анализа и электронной микроскопии плавленый шлак, полученный закалкой расплава, образован стеклофазой и распределенными в ней наноразмерными (от десятков до сотен нанометров) кристаллами фаз типа нагельшмидтита, в котором часть ионов Ca^{2+} замещена на равные количества ионов Na^+ и Al^{3+} - $Na_2Ca_3Al_2(PO_4)_2(SiO_4)_2$, гематита (Fe₂O₃) и примеси шпинели, по-видимому, магнетитового типа (Fe₃O₄) – рис. 5, слева. Материал, полученный медленным охлаждением расплава (отожженный) состоит, в основном, из тех же фаз, но в нем в незначительном количестве присутствует нефелин, повышается содержание шпинели, а Fe₂O₃ кристаллизуется в другой модификации (рис. 5, справа). Также присутствуют следы HfO₂. Этот материал несколько лучше раскристаллизован, чем закаленный, но и в нем максимальный размер кристаллов не превышает микрон.

При введении дисиликата натрия в количестве 15 масс.% (образцы 85Si) доминирующей кристаллической фазой в образце, полученном закалкой расплава, является Na/Al-замещенный нагельшмидтит (рис. 5, слева). Остальные фазы присутствуют в

Рисунок 5 – Рентген-дифрактограммы закаленных (слева) и отожженных (справа) образцов шлакосодержащих стекломатериалов, допированных гафнием. Н – гематит, NCP – ортофосфат натрия-кальция (NaCaPO₄), NCS – натрий-кальций силикат (Na₂Ca₂Si₃O₉), Ne – нефелин, Ng – нагельшмидтит, O – оксид гафния, Q – кварц, S – шпинель

количествах на границе чувствительности метода РФА. При отжиге выкристаллизовывается нефелин, который становится главной фазой, а нагельшмидтит – второстепенной. Минорными фазами являются гематит, шпинель и оксид гафния (рис. 5, справа). При дальнейшем разбавлении шлака натрий-дисиликатным флюсом материалы (75Si и 50Si), как после закалки, так и после отжига, становятся более аморфными. В закаленных образцах основной фазой становится фосфат натрия-кальция NaCa-PO₄ (рис. 5, слева), а минорными – нефелин и оксид гафния. Отожженные образцы имеют примерно такой же фазовый состав, плохо раскристаллизованы, а по текстуре подобны двум предыдущим (рис. 5). В закаленных образцах при содержании натрийтетраборатного флюса 15 (85В) и 25 масс.% (75В) нагельшмидтит остается практически единственной кристаллической фазой (рис. 5, слева), а образец 50В является аморфным. Отожженный образец 85В хорошо раскристаллизован и имеет достаточно сложный фазовый состав (рис. 5, справа). Основной фазой является нефелин, второстепенными – шпинель и нагельшмидтит, минорные фазы – гематит и оксид гафния.

ИК спектры стекломатериалов подобны приведенным выше на рис. 3.

Наименьшие величины нормированного выхода ионов Na⁺ имеют место из образцов, содержащих 85 масс.% оксидов шлака; для кремния наблюдается монотонное снижение величин нормированного выхода с увеличением содержания оксидов шлака в материалах, в выход гафния является наименьшим и практически постоянен, как из материалов на силикатной, так и боросиликатной основе. Для боросодержащих материалов выход бора из материала с 85 масс.% шлака несколько ниже, чем из материала с 75 масс.% шлака, но это, скорее всего, связано с понижением концентрации B₂O₃ в стекломатериалах (табл. 3).

Образец	Содержание	Нормированный выход, г/л			
	шлака, масс.%	В	Na	Si	Hf
75Si, закалка	75	-	2.35	1.55	0.10
75Si, медленное охлаждение	75	-	2.58	1.53	0.14
85Si, закалка	85	-	1.44	1.22	0.10
85Si, медленное охлаждение	85	-	1.49	1.20	0.11
MS, закалка	100	-	2.00	0.75	0.08
MS, медленное охлаждение	100	-	2.05	0.80	0.05
75В, закалка	75	5.66	3.35	3.02	0.14
75В, медленное охлаждение	75	5.84	3.29	3.20	0.10
85В, закалка	85	3.65	3.17	2.77	0.10
85В, медленное охлаждение	85	5.03	3.42	2.47	0.13

Таблица 3 – Результаты испытаний по методике РСТ-А гафний-содержащих образцов с различным содержанием шлака

В любом случае, величины нормированных выходов В, Na и Si из шлакосодержащих материалов, хотя и в несколько раз выше, чем из боросиликатных стекол, тем не менее, остаются для бора в 5-6 раз, для натрия – в 4-9, для кремния – в 1,5 – 3 раза ниже, чем требуется по стандарту США.⁵ Гафний входит в состав всех фаз в незначительном количестве, но концентрируется, особенно в борсодержащих материалах, в твердом растворе, обладающем высокой химической устойчивостью.

Сравнение результатов определения фазового состава образцов с HfO_2 и Sm_2O_3 с одинаковым массовым содержанием компонентов показывает, что присутствие даже малых концентраций оксидов (5 масс.%) существенно на него влияет. Прежде всего, это связано с различным кристаллохимическим поведением ионов Hf^{4+} и Sm^{3+} . Если при низких концентрациях оксидов этих элементов (образцы 50Si и 50B) это влияние мало заметно и различия в фазовом составе образцов определяются в основном особенностями их синтеза, то в образцах, содержащих не менее 75 масс.% шлака, разница в кристаллохимических свойствах ионов Hf^{4+} и Sm^{3+} становится главным фактором. Выделяющиеся в стекломатрицах кристаллы имеют размеры порядка десятков и сотен нанометров, редко достигая первых микрон. Подобные материалы, по структуре близкие к ситаллам и при содержании шлака более 75 масс.% обладающие высокой химической устойчивостью (табл. 3), могут рассматриваться как перспективные матрицы для долговременного хранения радиоактивного шлака.

Глава 5. Фазовый состав и строение стекломатериалов, допированных оксидом урана

Рисунок 6 – Рентген-дифрактограммы образцов остеклованных U-содержащих шлаков. Фазы: Н – гематит, Ne – нефелин, Ng – нагельшмидтит, O кубический твердый раствор на основе UO₂, S – высокожелезистая шпинель, U – фаза типа ураната кальция

Данные рентгенофазового анализа показывают, что все образцы сложены одними и теми же фазами, но в различных количественных соотношениях (рис. 6). Кристаллическими фазами являются нагельшмидтит, кубический твердый раствор на основе UO₂, фаза на основе ураната кальция, нефелин и высокожелезистые фазы типа гематита и шпинелей. Доля стеклофазы максимальна в образце 75В и минимальна в нефлюсованном плавленом шлаке (MS).

Плавление урансодержащего шлака на кальций-алюмо-фосфосиликатной основе с последующим медленным охлаждением в отключенной печи приводит к получению полифазного, преимущественно кристаллического, материала, в котором присутствуют фазы силикофосфата - Na,Al-замещенного нагельшмидтита, нефелина, высокожелезистой шпинели, фазы типа ураната кальция, кубического твердого раствора на основе диоксида урана и незначительного количества остаточной стеклофазы. В присутствии флюсующих добавок – дисиликата или тетрабората натрия при кристаллизации расплавов выделяются те же фазы, но в других

количественных соотношениях, в частности, с увеличением содержания флюса доля стеклофазы, относительно кристаллической составляющей, возрастает, особенно в присутствии натрий-тетраборатного флюса.

Уран в тех или иных количествах присутствует практически во всех фазах, хотя из-за малых размеров кристаллов фаз (от десятков нанометров до нескольких микрон) точное определение химического состава фаз не представляется возможным. Поэтому количественно определить долю урана в каждой из фаз также невозможно. Достоверным является то, что наивысшие концентрации урана имеют место в кубической фазе на основе UO₂ и уранате кальция CaUO₄, точнее – фазе на основе ураната кальция, в котором часть ионов Ca²⁺ может быть замещена на ионы Na⁺. Содержание урана в

стеклофазе (в пересчете на UO_2) может достигать 4,5-5 масс.% и, если в плавленом шлаке и материалах, содержащих 15 масс.% флюса, где доля стеклофазы незначительна, основным концентратором урана являются урансодержащие кристаллические фазы (твердый раствор на основе UO_2 и уранат кальция CaUO₄), то в материалах с большим количеством флюса доля урана в стеклофазе может быть сопоставима или даже превышать таковую в кристаллической составляющей.

ИК спектры стекломатериалов с ураном подобны спектрам Sm и Hf-содержащих образцов, приведенным выше на рис. 3.

Глава 6. Структурное положение самария, железа, гафния и урана в стекломатериалах

Из спектра рентгеновского поглощения самария в XANES диапазоне, следует, что самарий находится в трехвалентной форме в виде ионов Sm^{3+} . Фурьетрансформанты EXAFS спектров L_{III} края поглощения самария указывают на достаточно сложную конфигурацию первой координационной сферы самария. В структуре плавленого шлака (MS) ближайший ион кислорода находится на расстоянии ~2,29 Å от иона Sm^{3+} . С увеличением содержания флюса расстояние Sm—O в первой координационной сфере возрастает до 2,33-2,40 Å (табл. 4), однако, на характер локального окружения Sm сильно влияет соотношение аморфной и кристаллической фаз в образцах.

Образец	КЧ	Расстояние, Å	R-фактор
MS	$7,5{\pm}1,1$	2,29	0,09
85B	8,5±1,6	2,30	0,11
75B	$7,0{\pm}2,0$	2,40	0,12
50B	$6,3{\pm}1,2$	2,40	0,05
85Si	$6,2{\pm}1,5$	2,36	0,016
75Si	9,0±1,4	2,26	0,09
50Si	8,9±2,3	2,38	0,1
25Si	$8,1{\pm}1,8$	2,33	0,11

Таблица 4 – Результаты компьютерного моделирования EXAFS спектров первой координационной сферы самария

Как межатомные расстояния (R), так и координационные числа (KЧ) Sm по кислороду (~6...9), являются усредненными величинами для Sm в стеклофазе и бритолите (в образцах MS, 85B, 75B и 85Si), в котором его KЧ=9, а $R_{Sm=O}\approx2,6$ Å⁷. В малошлаковых образцах, особенно с силикатным флюсом, с низким содержанием бритолита Sm входит в стеклофазу, сохраняя структуру близкую к структуре одной из модификаций Sm₂O₃, на что указывает значение KЧ=8...9. В образцах с большим содержанием содержанием шлака (85B, 85Si, MS) есть указания на наличие второй координационной сферы. Вероятно, это связано с присутствием в материалах кристаллической фазы бритолита.

⁷ Y. Shimizugawa, N. Sawaguch, K. Kawamura, K. Hirao // J. Appl. Phys. 1997. V.81. P. 6657-6661.

В спектрах XANES К-края поглощения железа для всех материалов, как с натрий-дисиликатным, так и натрий-тетраборатным флюсом, полученных медленным охлаждением расплавов, присутствуют предкраевой пик, обусловленный $1s \rightarrow 3d$ переходами, вызванными гибридизацией 3d орбиталей железа и 2p орбиталей 9). Интенсивность предкраевого пика для данного иона в кислородном окружении возрастает в ряду: правильное октаэдрическое \rightarrow искаженное октаэдрическое \rightarrow тетраэдрическое. В нашем случае положение предкраевого пика остается практически постоянным – 7111,6±0,2 эВ, а его интенсивность относительно основного пика поглощения мало изменяется в зависимости от состава материалов. Энергия края поглощения возрастает с увеличением заряда иона. С увеличением содержания шлака в изученных стекломатериалах она незначительно снижается (примерно на 1,5 эВ). Положение компонент основного пика поглощения также изменятся незначительно, показывая, что и валентное состояние железа в остеклованных шлаках сохраняется достаточно постоянным и в основном равно 3.

Расстояние Fe—O1 в первой координационной сфере составляет 1,83-1,98 Å (рис. 7). В материалах с натрий-дисиликатным флюсом оно уменьшается с ростом содержания шлака от 1,98±0,01 Å (25Si) до 1,83±0,01 Å (85Si). В стекломатериалах с натрий-тетраборатным флюсом и содержанием шлака 25-50 масс.% расстояние Fe—O1 в первой координационной сфере составляет 1,92±0,01 Å. В материале 75В оно несколько меньше (~1,89 Å) и возрастает до ~1,95 Å при содержании шлака 85% (85B). В плавленом шлаке оно составляет ~1,89 Å. Вторая координационная сфера Fe в структуре образцов, содержащих до 75 масс.% шлака проявлена слабо, то есть ионы железа распределены достаточно равномерно и не склонны к образованию кластеров (рис. 9). Однако в многошлаковых стекломатериалах она выражена отчетливо. Расстояние Fe—M (M – Fe, Si, Al, P, Ca) можно оценить в 2,93-3,00 Å в силикатных и 2,87-2,96 Å в боросиликатных стекломатериалах. В образцах 85В и MS проявляется и третья координационная сфера Fe. Расстояние Fe—O2 составляет 3,70-3,73 Å.

По данным ЭПР при относительно низком содержании шлаковых компонентов в стекломатериалах ионы Fe3+ в тетраэдрическом кислородном окружении преобладают над октаэдрически-координированными. При увеличении содержания шлака в материалах соотношение изменяется в пользу вторых. При этом, наблюдается расщепление линий, по-видимому, вследствие распределения ионов Fe3+ между различными фазами. По данным рентген-дифрактометрии в материалах присутствует фаза шпинели типа магнетита и расщепление может быть связано с распределением железа между фазами стекла и шпинели. Гамма-облучение мало влияет на соотношение четырех-и шестикоординированного железа в структуре как силикатных, так и боросиликатных стекломатериалов.

Максимум поглощения в рентгеноабсорбционном спектре гафния локализован при 9564 эВ. Постоянное значение максимума поглощения указывает на одинаковое валентное состояние (4+) и сходное координационное окружение гафния во всех изученных образцах. Фурье-трансформанты EXAFS спектров также свидетельствуют о

Рисунок 7 – Спектры XANES (слева) и Фурье-трансформанты EXAFS спектров (без учета фазового сдвига) (справа) К-края поглощения железа в шлакосодержащих стекломатериалах, полученных охлаждением расплавов в отключенной печи, и маггемите (М)

примерно одинаковом координационном окружении во всех материалах. Среднее расстояние Hf—O в первой координационной сфере составляет 2.06 – 2.07 Å при координационном числе 5.8±0.5. При этом, заметной разницы между закаленными и отожженными образцами не наблюдается. Вторая координационная сфера гафния расщеплена на две подсферы с более коротким и более длинным расстояниями Hf—M. Это показывает вариабельность окружения гафния: второй соседний атом может быть не обязательно Hf, но другой элемент, например, Si или B.

Сравнение спектров XANES-диапазона L_3 края поглощения урана в шлакосодержащих стеклокристаллических материалах и референтных образцах (рис. 8) показывает, что уран в шлакосодержащих материалах находится, преимущественно, в форме U(IV), за исключением нефлюсованного плавленого шлака, в котором есть заметная примесь U(VI).

Фурье-трансформанты EXAFS спектров L_3 края урана (рис. 8) и результаты компьютерного моделирования также указывают на существенную разницу в струк-

турном положении урана в сильно закристаллизованном плавленом шлаке MS и стеклокристаллических материалах, полученных с использованием натрий-силикатного и натрийборатного флюсов. Как и спектры поглощения, ФТ представляют собой суперпозицию ФТ спектров урана в UO₂, CaUO₄ и стеклофазе. ФТ спектра плавленого шлака подобна наблюдавшейся ранее для CaUO₄. В плавленном шлаке уран присутствует в шестивалентной форме в виде ионов уранила (R U—O_{ax}=1,96±0,01 Å, U—O_{eq}=2,32±0,02 Å) в составе ураната кальция и стеклофазы, и в четырехвалентной форме в составе кубического твердого раствора на основе UO₂ со средним расстоянием в первой координационной сфере 2,32±0,02 Å. В шлаковых продуктах, остеклованных с натрий-дисиликатных и натрий-тетра-боратным флюсами, U(IV) входит в твердый раствор на основе UO₂, а U(VI) – в стеклофазу и, в незначительном количестве, в CaUO₄. Расстояния U—O в первой координационной сфере являются суперпозициями расстояний в соответствующих фазах.

Рисунок 8 – Спектры XANES (слева) и Фурье-трансформанты EXAFS спектров (справа) L₃ края урана в остеклованных шлаках и их сравнение с литературными данными для уранинита (UO₂), стекол различных составов, содержащих разновалентные формы урана (AN1, AB4, PR, AB2), кюриенита (C) и CaUO₄

Основные выводы и результаты работы

1. При остекловывании шлаков, образующихся при сжигании твердых РАО, в присутствии натрий-дисиликатного и натрий-тетраборатного флюсов образуются стеклокристаллические материалы с кристаллами от нано-размерных до десятков

микрон с высокой химической устойчивостью, в которых содержание кристаллической составляющей возрастает с увеличением содержания шлака.

2. Механизм взаимодействия между имитатором РАО и бурой примерно соответствует простому растворению компонентов РАО в натрий-тетраборатном расплаве: содержание кристаллической составляющей шлака уменьшается с увеличением содержания буры, в то время как в безборных алюмосиликатных расплавах имеет место изменение соотношения кристаллических фаз в пользу нефелина, кристаллизующегося из расплава.

3. Процесс остекловывания в шихтных смесях из имитатора шлака и натрийдисиликатного или натрий-тетраборатного флюса протекает через образование промежуточных фаз, главным образом, силикофосфатов, способных инкорпорировать Sm, рассматриваемый как имитатор трехвалентных актинидов. Реакции в шихтах в целом завершаются до температур ~1000 °C, но для гомогенизации требуются более высокие температуры.

4. Материалы, полученные при остекловывании искусственного шлака, допированного HfO₂ как имитатора четырехвалентных актинидов, в присутствии натрийдисиликатного или натрий-тетраборатного флюса образованы стеклом и фазами алюмосиликатов, силикофосфатов и оксидов железа (магнетита, гематита). В материалах, содержащих 85 масс.% шлака преобладает алюмосиликатная фаза типа нефелина, а в плавленом шлаке (без флюса) нефелин и Na/Al-замещенный нагельшмидтит присутствуют в примерно равных количествах.

5. В остеклованном урансодержащем шлаке присутствуют стеклофаза и некоторое количество фазы типа ураната кальция. В стекломатериалах, полученных с использованием натрий-дисиликатного флюса основными фазами являются стекло, нефелин и нагельшмидтит, количества которых убывают при разбавлении шлака флюсом. При использовании в качестве флюса тетрабората натрия образцы состоят в основном из стеклофазы, в которой распределены кристаллы гематита и/или кубического оксида типа UO₂.

6. В остеклованных шлаках самарий присутствует в виде ионов Sm^{3+} , окруженных 6-8 ионами кислорода, находящимися на расстоянии 2,26-2,40Å от ионов Sm^{3+} . В некоторых образцах, особенно с большим содержанием шлака, средние значения КЧ несколько выше (8,5-9,0). Это, а также проявление, хотя и слабое, второй координационной сферы указывает на распределение Sm между стеклом и кристаллической фазой бритолита.

7. Гафний присутствует в четырехвалентной форме и распределяется между стеклофазой и кристаллическими фазами, в основном, твердым раствором на основе HfO_2 . Среднее расстояние Hf—O и координационное число в первой сфере - 2.06-2.07Å и 5.8, соответственно, что отличается от таковых в моноклинном HfO_2 (2.15 Å and 7). Вторая координационная сфера гафния практически не проявлена.

8. В плавленом шлаке уран присутствует в шестивалентной форме в виде ионов уранила (расстояние U– O_{ax} 1.96±0.01, U– O_{eq} 2.32±0.02Å) в составе ураната кальция и стеклофазы и в четырехвалентной форме в составе кубического твердого раствора на

основе UO_2 со средним расстоянием в первой координационной сфере 2.32±0.02Å. В шлаковых продуктах, остеклованных с натрий-дисиликатным и натрийтетраборатным флюсами, U(IV) входит в твердый раствор на основе UO_2 , а U(VI) – в стеклофазу и в незначительном количестве в CaUO₄. Расстояния U–O в первой координационной сфере являются суперпозициями расстояний в соответствующих фазах.

9. Материалы, полученные с натрий-дисиликатным флюсом и содержащие более 50 масс.% шлака, и материалы, полученные с натрий-тетраборатным флюсом и содержащие более 75 масс.% шлака, обладают высокой химической устойчивостью и могут рассматриваться как перспективные материалы для иммобилизации шлаков печей сжигания РАО.

Список работ по теме диссертации

Статьи в журналах, рекомендованных ВАК РФ, и иностранных журналах, реферируемых в базах Web of Science и Scopus

1. Malinina, G.A. Glass Ceramics for Incinerator Ash Immobilization [Text] / G.A. Malinina, O.I. Stefanovsky, S.V. Stefanovsky // Journal of Nuclear Materials. -2011. - V. 416. -P.230-235.

2. Стефановский, С.В. ЭПР ионов переходных металлов и радиационных дефектов в материалах для иммобилизации радиоактивных шлаков [Текст] / С.В. Стефановский, Г.А. Малинина, О.И. Стефановская // Физика и химия обработки материалов. – 2012. – №1. – С.30-39.

3. Стефановский, С.В. ЭПР радиационных парамагнитных центров в облученных стекломатриалах, полученных при остекловывании имитатора радиоактивного шлака с натрий-тетраборатным флюсом [Текст] / С.В. Стефановский, О.И. Стефановская, Г.А. Малинина // Физика и химия обработки материалов. – 2012. – № 2. – С. 5-11.

4. Малинина, Г.А. Фазовый состав и строение стеклокристаллических материалов, допированных оксидом гафния, как матриц для иммобилизации радиоактивных шлаков [Текст] / Г.А. Малинина, С.В. Стефановский, О.И. Стефановская // Физика и химия обработки материалов. – 2012. – № 3. – С.75-82.

5. Малинина, Г.А. Фазовый состав и структура безборных и борсодержащих натрий-алюмо-железо-силикатных стекломатериалов для иммобилизации твердых радиоактивных отходов [Текст] / Г.А. Малинина, С.В. Стефановский, О.И. Стефановская. // Физика и химия стекла 2012. – Т. 38. – № 3. – С.347-349.

6. Валентность и структурное положение железа в остеклованных шлаках [Текст] / С.В. Стефановский, Г.А. Малинина, А.А. Ширяев, Я.В. Зубавичус // Физика и химия стекла. – 2012. – № 5. – С.76-82.

7. Локальное окружение ионов самария в остеклованных шлаках [Текст] / С.В. Стефановский, Г.А. Малинина, А.А. Ширяев, Я.В. Зубавичус // Физика и химия обработки материалов. – 2012. - № 5. – С.83-88.

8. Стефановский, С.В. ЭПР радиационных парамагнитных центров в облученных стеклах для иммобилизации твердых радиоактивных отходов с натрийсиликатным флюсом, синтезированных в различных условиях [Текст] / С.В. Стефановский, Г.А. Малинина, О.И. Стефановская // Физика и химия обработки материалов. – 2013. – № 5. – С.70-76. 9. Малинина, Г.А. Стеклокристаллические материалы для иммобилизации радиоактивных шлаков [Текст] / Г.А. Малинина, С.В. Стефановский, Б.С. Никонов // Физика и химия обработки материалов. – 2013. – № 6. – С.82-89.

10. Малинина, Г.А. Структура и колебательные спектры шлаков, получаемых из радиоактивных отходов [Текст] / Г.А. Малинина, С.В. Стефановский // Журнал при-кладной спектроскопии. – 2014. – Т. 81. – № 2. – С.204-208.

11. Hafnium and Samarium Speciation in Vitrified Radioactive Incinerator Slag [Text] / G.A. Malinina, S.V. Stefanovsky, A.A. Shiryaev, Y.V. Zubavichus // Ceramics for Environmental and Energy Applications II. Ceramic Transactions. – 2014. – V.46. – P.265-272.

12. Малинина, Г.А. Состояние урана в стеклокристаллических материалах для иммобилизации радиоактивных шлаков [Текст] / Г.А. Малинина, С.В. Стефановский // Радиохимия. – 2014. – Т.56. – № 6. – С.536-539.

Статьи в трудах конференций, реферируемых в других международных базах данных

13. The Effect of Waste Loading on Phase Composition, Structure and Chemical Durability of Glassy Materials for Immobilization of High-Sodium Aluminum Waste [Электронный pecypc] / S.V. Stefanovsky, A.N. Sorokaletova, G.A. Malinina, B.S. Nikonov // Proc. Waste Management 2011 Conference. February 27 – March 3, 2011, Phoenix, AZ. CD-ROM, 2011, ID 11475, 11 p.

14. Stefanovsky, S.V. Mechanism of Phase Formation in the Batch Mixtures for Slag-Bearing Glass Ceramics [Электронный ресурс] / S.V. Stefanovsky, O.I. Stefanovsky, G.A. Malinina // Proc. Waste Management 2012 Conference, February 26 – March 1, 2012, Phoenix, AZ. CD-ROM, 2012, ID 12207, 8 p.

Тезисы докладов

15. Malinina, G.A. Glass Ceramics for Solid Radioactive Waste [Электронный реcypc] / G.A. Malinina, O.I. Stefanovsky, S.V. Stefanovsky // E-MRS 2010 Spring Meeting, Strasbourg, France – June 7-11, 2010, Abstracts: <u>http://emrs-strasbourg.com/index2/</u> php?option=com_abstract &task =view&id=9

16. Малинина, Г.А. Локальное окружение самария в стекломатериалах на основе радиоактивного шлака [Текст] / Г.А. Малинина, С.В. Стефановский, А.А. Ширяев // Тезисы 7-ой Российской конференции по радиохимии «Радиохимия – 2012», г. Димитровград, 15-19 октября 2012, НИИАР, 2012, С.251.

17. Hafnium and Samarium Speciation in Vitrified Radioactive Incinerator Slag [Text] / G.A. Malinina, S.V. Stefanovsky, A.A. Shiryaev, Y.V. Zubavichus // 10th Pacific Rim Conference on Ceramic and Glass Technology. June 2-7, 2013, San Diego, CA, USA. Abstract Book, 2013, P.99.

18. Malinina, G.A. Uranium Speciation in Vitrified Incinerator Slags [Text] / G.A. Malinina, S.V. Stefanovsky // Russian-Nordic Symposium on Radiochemistry, 21-24 October 2013, Moscow, Russia, Abstracts, 2013, P.61.

19. Малинина, Г.А. Характеристика урансодержащих остеклованных радиоактивных шлаков [Текст] / Г.А. Малинина, С.В. Стефановский // Стекло: наука и практика. Российская конференция с международным участием, 6-8 ноября 2013, г. Санкт-Петербург. Тезисы докладов, 2013, С.161.