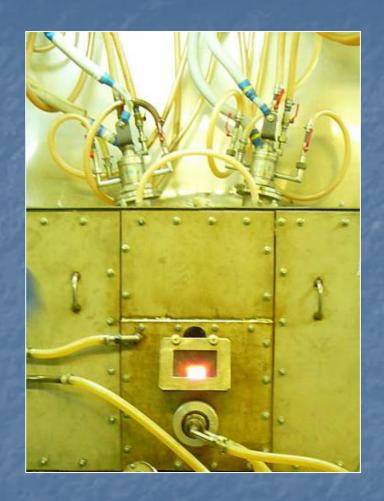


ТЕХНОЛОГИЯ ПЛАЗМЕННО-ПИРОЛИТИЧЕСКОЙ ПЕРЕРАБОТКИ РАДИОАКТИВНЫХ ОТХОДОВ

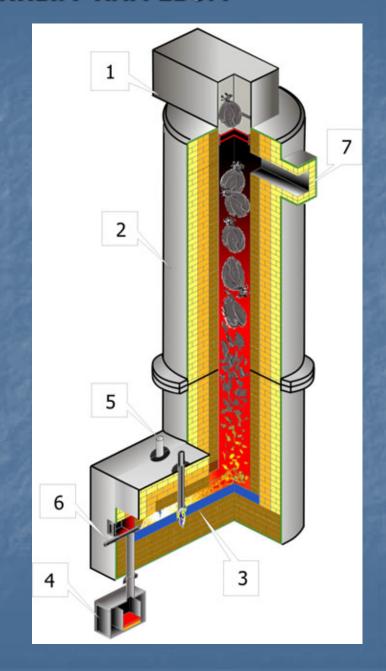
НАЗНАЧЕНИЕ

Технология предназначена для плазменнопиролитической переработки твердых радиоактивных отходов среднего и низкого уровней активности сложного морфологического состава, содержащих как горючие, так и негорючие (до 30 масс. %) компоненты, с получением шлакового компаунда с высокими механической прочностью и химической стойкостью, пригодного для окончательного захоронения или долговременного контролируемого хранения при максимальной безопасности для персонала И окружающей среды.



ОБЛАСТЬ ПРИМЕНЕНИЯ

Технология пригодна для термической переработки твердых радиоактивных отходов, образующихся при эксплуатации, выводе из эксплуатации и ранее накопленных в хранилищах атомных электростанций и радиохимических предприятий.

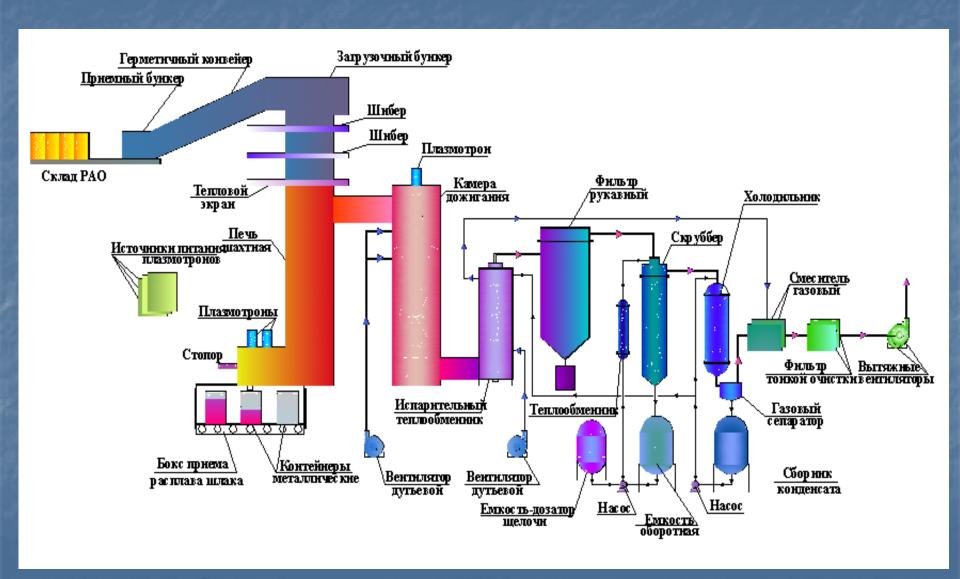

ШАХТНАЯ ПЕЧЬ С ПЛАЗМЕННЫМ НАГРЕВОМ

Шахтная печь:

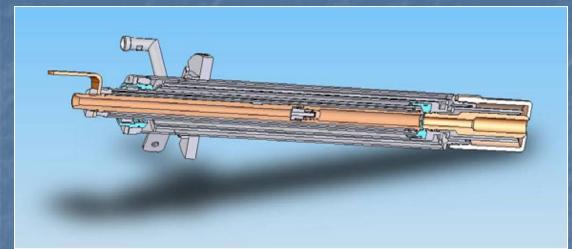
1 - узел загрузки, 2 - шахта, 3 - под, 4 - бокс приема шлака,

5 - плазмотрон, 6 - стопор, 7 - выход пирогаза.

ХАРАКТЕРИСТИКИ ПЛАЗМЕННЫХ УСТАНОВОК


Параметр	"Пиролиз"	"Плутон"
Производительность		
по твердым отходам, кг/ч	40-50	200-250
Габариты, м	8 × 8 × 10	12 × 18 × 12
Количество плазмотронов		2
Электрическая мощность		
плазмотронов, кВт	70-120	100-150
Время выхода на режим, ч	8-12	16-24
Удельные энергозатраты, кВт*ч/кг	1-2	0.5-1

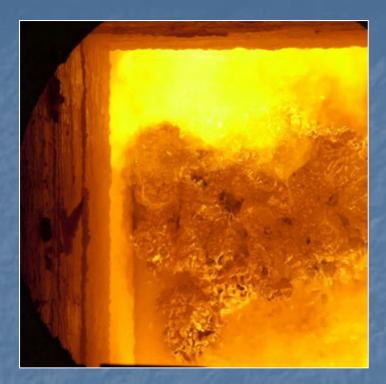
ТЕХНОЛОГИЧЕСКАЯ СХЕМА УСТАНОВКИ "ПЛУТОН"



МОРФОЛОГИЧЕСКИЙ СОСТАВ ОТХОДОВ, ПЕРЕРАБАТЫВАЕМЫХ ПЛАЗМЕННЫМ МЕТОДОМ

Наименование компонента	Доля, масс. %
Бумага	11 - 90
Дерево (опилки)	1 - 5
Дерево (дрова)	2 - 20
Текстиль (ветошь)	4 - 7
Пластик (полиэтилен, ПЭТ, ПВХ)	4 - 8
Стекло (бытовое и лабораторное)	2 - 8
Резина (шланги, автомобильные покрышки)	2 - 5
Электрические платы, радиодетали	1 - 5
Строительный мусор	4 - 15
Теплоизоляционные материалы	1 - 5
Металл	3 - 10
Ионообменные смолы	0,3 - 2
Растительные материалы	2 - 5
Общая зольность отходов	7 - 40
Общая влажность отходов	5 - 35
Удельная активность по α -излучателям, в пределах	3,7·10² кБк/кг
Удельная активность по β-излучателям, в пределах	3,7·10³ кБк/кг

ПЛАЗМОТРОНЫ


Плазмотрон «Радон-2», 30-50 кВт 1990-96 г.г.

Плазмотроны серии «Радон-6», 90-150 кВт

СЛИВ РАСПЛАВА ШЛАКА

ШЛАК В ПРИЕМНЫХ КОНТЕЙНЕРАХ

ОСНОВНЫЕ ЭКОЛОГИЧЕСКИЕ И ЭКОНОМИЧЕСКИЕ ДОСТОИНСТВА ПЛАЗМЕННО-ПИРОЛИТИЧЕСКОЙ ТЕХНОЛОГИИ:

- оптимизированный подход к ранее накопленным и вновь возникающим эксплуатационным отходам и отходам, образующимся при выводе энергетических блоков оборудования из эксплуатации и реабилитации территории;
- научно-исследовательский и эксплуатационный опыт, обеспечивающий максимальную безопасность процесса переработки отходов;
- сравнительно невысокие удельные капитальные и эксплуатационные затраты;
- минимальное присутствие обслуживающего персонала на наиболее опасных участках;
- повышение безопасности длительного хранения и захоронения кондиционированных форм отходов благодаря переводу радиоактивных отходов в форму стеклоподобного шлака;
- значительное сокращение объема отходов в результате их термической переработки, возможность наиболее эффективного использования объемов хранилищ и площадок захоронения кондиционированных форм РАО;
- значительное сокращение затрат на содержание хранилищ: строительство, эксплуатацию, закрытие и последующий контроль состояния сооружений Полигона;
- полное соответствие нормативам в области обращения с радиоактивными отходами и радиационной безопасности.